previous next


PROPOSITION 8.

In a given square to inscribe a circle.

Let ABCD be the given square; thus it is required to inscribe a circle in the given square ABCD.

Let the straight lines AD, AB be bisected at the points E, F respectively [I. 10], through E let EH be drawn parallel to either AB or CD, and through F let FK be drawn parallel to either AD or BC; [I. 31] therefore each of the figures AK, KB, AH, HD, AG, GC, BG, GD is a parallelogram, and their opposite sides are evidently equal. [I. 34]

Now, since AD is equal to AB, and AE is half of AD, and AF half of AB,

therefore AE is equal to AF, so that the opposite sides are also equal;
therefore FG is equal to GE.

Similarly we can prove that each of the straight lines GH, GK is equal to each of the straight lines FG, GE;

therefore the four straight lines GE, GF, GH, GK are equal to one another.

Therefore the circle described with centre G and distance one of the straight lines GE, GF, GH, GK will pass also through the remaining points.

And it will touch the straight lines AB, BC, CD, DA, because the angles at E, F, H, K are right.

For, if the circle cuts AB, BC, CD, DA, the straight line drawn at right angles to the diameter of the circle from its extremity will fall within the circle : which was proved absurd; [III. 16] therefore the circle described with centre G and distance one of the straight lines GE, GF, GH, GK will not cut the straight lines AB, BC, CD, DA.

Therefore it will touch them, and will have been inscribed in the square ABCD.

Therefore in the given square a circle has been inscribed. Q. E. F.


PROPOSITION 9.

About a given square to circumscribe a circle.

Let ABCD be the given square; thus it is required to circumscribe a circle about the square ABCD.

For let AC, BD be joined, and let them cut one another at E.

Then, since DA is equal to AB, and AC is common, therefore the two sides DA, AC are equal to the two sides BA, AC; and the base DC is equal to the base BC;

therefore the angle DAC is equal to the angle BAC. [I. 8]

Therefore the angle DAB is bisected by AC.

Similarly we can prove that each of the angles ABC, BCD, CDA is bisected by the straight lines AC, DB.

Now, since the angle DAB is equal to the angle ABC, and the angle EAB is half the angle DAB, and the angle EBA half the angle ABC, therefore the angle EAB is also equal to the angle EBA; so that the side EA is also equal to EB. [I. 6]

Similarly we can prove that each of the straight lines EA, EB is equal to each of the straight lines EC, ED.

Therefore the four straight lines EA, EB, EC, ED are equal to one another.

Therefore the circle described with centre E and distance one of the straight lines EA, EB, EC, ED will pass also through the remaining points; and it will have been circumscribed about the square ABCD.

Let it be circumscribed, as ABCD.

Therefore about the given square a circle has been circumscribed. Q. E. F.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

hide Display Preferences
Greek Display:
Arabic Display:
View by Default:
Browse Bar: