previous next
from which it follows that
.

The same sort of argument is used for solids, plane sections taking the place of straight lines.

Archimedes is careful to state once more that this method of argument does not constitute a proof. Thus, at the end of the above proposition about the parabolic segment, he adds: “This property is of course not proved by what has just been said; but it has furnished a sort of indication (ἔμφασίν τινα) that the conclusion is true.”

Let us now turn to the passage of Plutarch (De Comm. Not. adv. Stoicos XXXIX 3) about Democritus above referred to. Plutarch speaks of Democritus as having raised the question in natural philosophy (φυσικῶς): “if a cone were cut by a plane parallel to the base [by which is clearly meant a plane indefinitely near to the base], what must we think of the surfaces of the sections, that they are equal or unequal? For, if they are unequal, they will make the cone irregular, as having many indentations, like steps, and unevennesses; but, if they are equal, the sections will be equal, and the cone will appear to have the property of the cylinder and to be made up of equal, not unequal circles, which is very absurd.” The phrase “made up of equal...circles” (ἐξ ἴσων συγκείμενος...κύκλων) shows that Democritus already had the idea of a solid being the sum of an infinite number of parallel planes, or indefinitely thin laminae, indefinitely near together: a most important anticipation of the same thought which led to such fruitful results in Archimedes. If then one may hazard a conjecture as to Democritus' argument with regard to a pyramid, it seems probable that he would notice that, if two pyramids of the same height and equal triangular bases are respectively cut by planes parallel to the base and dividing the heights in the same ratio, the corresponding sections of the two pyramids are equal, whence he would infer that the pyramids are equal as being the sum of the same infinite number of equal plane sections or indefinitely thin laminae. (This would be a particular anticipation of Cavalieri's proposition that the areal or solid contents of two figures are equal if two sections of them taken at the same height, whatever the height may be, always give equal straight lines or equal surfaces respectively.) And Democritus would of course see that the three pyramids into which a prism on the same base and of equal height with the original pyramid is divided (as in Eucl. XII. 7) satisfy this test of equality, so that the pyramid would be one third part of the prism. The extension to a pyramid with a polygonal base would be easy. And Democritus may have stated the proposition for the cone (of course without an absolute proof) as a natural inference from the result of increasing indefinitely the number of sides in a regular polygon forming the base of a pyramid.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

hide Display Preferences
Greek Display:
Arabic Display:
View by Default:
Browse Bar: